
PHYS 798C Fall 2025
Lecture 9 Summary

Prof. Steven Anlage

I. THE BCS VARIATIONAL CALCULATION

A. Expectation values

We first evaluated the expectation value ⟨ΨBCS |H − µNop |ΨBCS⟩ for the kinetic energy and the
potential energy using the properties of the creation and annihilation operators. The result is
⟨ΨBCS |H − µNop |ΨBCS⟩ = 2

∑
k ξk |vk|

2
+
∑

k,l Vk,lukv
∗
ku

∗
l vl.

The kinetic energy is the sum over all k-states of the single-particle energies times the probability that
the Cooper pair at that momentum state is occupied, times 2 for the two electrons that make up the
Cooper pair. The potential energy is constrained by matrix elements. Initially the Cooper pair at (l,−l)
must be occupied while that at (k,−k) must be empty. In the final state the pair at (k,−k) must be
filled while that at (l,−l) is left empty. This brings in the four factors of u’s and v’s. A more detailed
derivation is given in Annett, problem 6.2 (solutions in the back of the book).

B. The Variational Calculation

The actual calculation is quite simple and elegant. Assume for now that the u’s and v’s are real. This
is OK because it assumes for the moment that the macroscopic phase of the coherent state Cooper pair
WF is fixed at zero. Given the constraint that |uk|2 + |vk|2 = 1, one has just a single parameter, namely
the angle θk to keep track of, such that uk = sin(θk) and vk = cos(θk).
The terms in the expectation value can now be written using double angle formulas as v2k = cos2(θk) =
1
2 (1 + cos(2θk)), and ukvkulvl =

1
2 sin(2θk)

1
2 sin(2θl).

The expectation value is now

⟨ΨBCS |H − µNop |ΨBCS⟩ =
kM∑
k=k1

ξk(1 + cos(2θk)) +
1

4

kM ,lM∑
k,l

Vk,l sin(2θk) sin(2θl) (1)

Taking the derivative with respect to θk′ (i.e. ∂
∂θk′

⟨ΨBCS |H −µNop |ΨBCS⟩) yields the following result,

tan(2θk) =
1

2ξk

∑
l Vk,l sin(2θl).

C. Definition of the Energy Gap and Quasiparticle Energy

Make the following two definitions:
∆k ≡ −

∑
l Vk,lulvl = − 1

2

∑
l Vk,l sin(2θl), which defines the “energy gap” of the superconductor. This

will turn out to be the gap in the single-particle excitation spectrum out of the BCS ground state. It
can also serve informally as a rough “order parameter” of the superconducting state, although this is
not a rigorous definition of a superconducting order parameter. Where does this entity come from?
Basically it is the expectation value of the Cooper pair destruction operator, ∆ ∼

∑
k⟨c−k,↓ck,↑⟩. Recall

from the coherent state of a harmonic oscillator that |α⟩ is the eigenfunction of the lowering operator:
a− |α⟩ = α |α⟩. The Cooper pair destruction operator Pk plays a similar role here, with the BCS ground
state acting as a coherent state of Cooper pairs. The energy gap is some measure of how many Cooper
pairs there are in the coherent state.
Ek ≡

√
∆2

k + ξ2k is the quasiparticle energy. Note that the minimum energy of a quasiparticle excitation
(discussed later) is the energy gap, Ek ≥ ∆.
With these definitions, the variational equation can now be written as,
tan(2θk) = −∆k

ξk
.

With some further trigonometric gamesmanship, one can write the u’s and v’s in terms of these newly
defined quantities:
sin(2θk) = 2ukvk = +∆k

Ek

https://www.physics.umd.edu/courses/Phys798C/AnlageFall25/Harmonic%20Oscillator%20Coherent%20States.pdf
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and, cos(2θk) = v2k − u2
k = − ξk

Ek

D. Self-Consistent Gap Equation

Now use the above expression for the product of ukvk back in the definition of the energy gap to
obtain the celebrated self-consistent gap equation:
∆k = − 1

2

∑
l

∆l√
∆2

l +ξ2l
Vk,l.

In general this can be challenging to solve, but we will consider two simple cases here.

1. Self-Consistent Gap Equation for the Normal State

First look at the trivial solution ∆k = 0 for all k. Going back to the u’s and v’s, this means that
sin(2θk) = 2ukvk = 0 for all k and,

cos(2θk) = v2k − u2
k = − ξk

Ek
=

{
−1 ξk > 0
+1 ξk < 0

This is a peculiar situation in which all Cooper states are occupied below ξ = 0 and all Cooper pair
states are un-occupied above ξ = 0. In other words: uk = 1 and vk = 0 for ξk > 0, and uk = 0 and
vk = 1 for ξk < 0. Roughly speaking this is like the state |F ⟩ that we introduced earlier, but it involves
all electrons being bound in Cooper pairs with properly anti-symmetrized WFs inside the Fermi sphere,
and all states outside un-occupied.
However, consider the potential energy term

∑
k,l Vk,lukvkulvl. This term is identically zero as it has

zero contributions from all k because of the result that 2ukvk = 0. Hence this “normal state” does not
take advantage of the pairing interaction and is not a superconductor!
Next we will find a non-trivial solution to the self-consistent gap equation.

2. Self-Consistent Gap Equation for the Superconducting State

Take another look at the celebrated self-consistent gap equation:
∆k = − 1

2

∑
l

∆l√
∆2

l +ξ2l
Vk,l.

Now look for a non-trivial solution.
Put in the Cooper pairing potential approximation as,

Vk,l =

{
−V |ξk| , |ξl| ⩽ ℏωc

0 |ξk| and/or |ξl| > ℏωc

with V a positive number. This creates an attractive pairing interaction within a “skin” of thickness
ℏωc around the Fermi energy. It is a bit more democratic now, not just pertaining to a chosen pair of
electrons, but acting on all electrons near the chemical potential.
Note that this choice of Vk,l dictates that the energy gap will only exist over a limite energy range,

∆k =

{
∆ |ξk| < ℏωc

0 |ξk| > ℏωc

With this, the self-consistent gap equation becomes,

∆k = +V
2

∑Restricted
l

∆l√
∆2

l +ξ2l
, where the sum is now restricted to those values of k and l that give non-

zero pairing interaction. Since the right-hand side is independent of k, it must be that ∆k = ∆l = ∆,
independent of k. This is a consequence of the simple proposed pairing interaction and spherical Fermi
surface. Hence we have
1 = +V

2

∑Restricted
l

1√
∆2

l +ξ2l

Converting from a sum on l to an integral on energy from −ℏωc to +ℏωc brings in the density of states
D(E) and allows us to solve for ∆ in closed form:
∆ = ℏωc

sinh(1/D(EF )V )

Once again, if we take the “weak coupling” approximationD(EF )V << 1, this yields, ∆ ≈ 2ℏωce
−1/D(EF )V ,

a result very similar to the Cooper result for the binding energy of the Cooper pair. In fact it will turn
out that BCS predicts a universal value for the ratio ∆/kBTc in the weak coupling approximation.
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Going back to the u’s and v’s, we now have two equations and expressions for everything inside them:
v2k − u2

k = − ξk
Ek

, and u2
k + v2k = 1.

These can be solved uniquely for u2
k and v2k:

v2k = 1
2

[
1− ϵk−µ√

∆2+(ϵk−µ)2

]
, and

u2
k = 1− v2k = 1

2

[
1 + ϵk−µ√

∆2+(ϵk−µ)2

]
.

These expressions give us the occupation probability for the Cooper pairs as a function of k, or energy.
See the plot on the Supplementary Information part of the class web site. The Cooper pair occupation
probability is very close to the smeared Fermi function for single particle state occupation probability
at Tc, which is a surprising result, given that we are calculating a zero-temperature property of the su-
perconductor! In fact the superconductor makes an interesting gambit: it promotes many Cooper pairs
from states inside the filled Fermi sea to un-occupied Cooper pair states outside specifically to “activate”
the pairing interaction. This in turn creates an overall decrease of the energy of the superconductor
relative to the normal metal state.

https://www.physics.umd.edu/courses/Phys798C/AnlageFall25/BCS%20occupation%20uk%20fermi%20plots.pdf
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